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FAIRY RING KINETICS

By A. F. PARKER-RHODES
University of Cambridge

(With 2 Text-figures)

The behaviour of a system of fairy rings, and in particular its condition on
attaining a steady state, is studied theoretically with the help of a simple
geometrical model. From the properties of this model, the proportion of the
ground occupied by the mycelium is calculated and shown graphically as
a function of the growth rate for different values of the reproduction rate. The
consequences of interaction between fairy rings of different species, and the
factors affecting the mean lifetime of the rings, are also considered.

Conclusions are drawn from these relationships regarding the adaptation of
larger fungi for life in various habitats. The ring habit is very inefficient and
the communities to which it gives rise very open; these conditions are likely
to promote the evolution of a number of species of nearly identical ecological
requirements. It is found that there is a minimum area for any species in
which it can produce a stable ring system; the possible means by which
Basidiomycetes can compete successfully in smaller areas are discussed.

These points, though somewhat conjectural, touch many subjects of general
biological and ecological significance, and may be of value in suggesting further
lines of fruitful experimental inquiry.

I. INTRODUCTION

We are so familiar with the phenomenon of fairy rings that we do not
always appreciate what interesting and peculiar problems of ecology and
biology they raise. Their practical importance, though it has never been
accurately assessed, is no doubt considerable, seeing that with many
species their effect is marked both on the growth and on the ecological
succession of the herb layer, often agricultural grassland. It is therefore
desirable to know as much as possible of the properties belonging to
t~is habit, and of the kinds of fungus communities to which it can give
rise,

A large grass field carrying a system of fairy rings can be visualized as
like a pond in a light shower of rain. Each ring grows outwards at a
constant (or irregularly fluctuating) rate, and new rings are added to the
system with approximately constant frequency. When rings of the same
species meet, then, unlike ring waves on water, their intersected portions
are obliterated; but as between different species either or both may
survive the intersection. The important thing is that no ring ever remains
still, but only stops growing when it dies. However, all these processes
take place with extreme slowness; in the rain-drop analogy the rings grow
at a few feet per second, and new ones appear at the order of ten per
square foot per second, whereas fairy rings grow at a few feet per year and
appear less often than ten per hundred acres per year.

The following are the main points of interest regarding fairy ring
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systems which are open to theoretical generalizations. First, the pro­
portion of the ground occupied by the mycelium; secondly, the factors
affecting interspecific competition in mixed ring systems; thirdly, the age
distribution of individual rings. I propose to examine each of these
questions with the help of mathematical analysis; fortunately it is possible
to construct a very good geometrical model of such a system, from which
its behaviour can be deduced with reasonable accuracy, using only
elementary calculus.

2. GEOMETRY OF THE SYSTEM

It is assumed that the system consists of mycelia growing at a uniform and
constant rate p, on a uniform and constant plane field of area A. If the
rate is not in fact constant, but if the variations are common to the whole
system, the effect is simply that of a modified time scale, so that no real
lossof realism is involved here. The system has thus two spatial dimensions;
we can therefore represent the age of the system as a third spatial dimen­
sion, and all the properties of the system will be inherent in the resulting
solid figure. In this figure each ring is represented by a right cone; for
simplicity the whole system will be regarded as enclosed in another right
cone. Since we shall be largely concerned with steady state conditions,
this bounding cone can be regarded as very large and the significant part
of the system as concentrated near its axis. Two intersecting (and mutually
obliterating) rings are represented by the exposed surface of two intersecting
cones.

In relation to a given ring (which I shall call the preposite) any other
ring will be called an impingent if it has intersected or is destined to intersect
the preposite. Any ring which wholly encloses the preposite will be called
an amplectant, If a ring A has an amplectant A' and a second ring B has no
amplectant not common to both rings, then B will impinge on A', their
intersected portions will disappear, and B will thus never impinge on A.
It is thus easy to see that the condition that two rings should be mutually
impingent is that the number of amplectants of each which are not also
amplectants of the other should be equal. In this sentence we must allow
compound rings, i.e. those formed by previous intersection of two or more,
to count as single amplectants; however, it will in due course appear that
the probability of any preposite having a compound amplectant both of
whose elements are also amplectants is so small that the results will be
scarcely unchanged if we count only single rings as amplectants, which
greatly simplifies the mathematics.

In the cone model, the condition that a ring should be an amplectant is
evidently that the vertex of its cone should lie within the anticone of its
preposite (see Fig. I, where P represents the preposite, and B +D con­
stitutes its anticone). The condition that such an amplectant should not
be also an amplectant of another ring Q is therefore that it should not lie
in the intersection of the two anticones (i.e. not in D in Fig. I). The mean
numbers of amplectants peculiar to each ring are therefore proportional
to the volumes Band C respectively (the number of vertices per unit
volume, representing the rate of initiation of rings, being constant). For
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the case where the bounding cone is very large it can be shown from
elementary geometry that the approximate relations hold:

C=l7Tp2P (t" - t' + t), (r c)

B= t 1Tp2P (t" +t' -t), (Ib)

where t represents the age (i.e. height of cone) of the preposite P, t' is the
age of ring Q" t"p the distance between their centres, and Tp the mean
radius of the field. If a is the number of new rings per unit area per unit

Fig . I . The ma in points of the geometrical model. The diagram is not drawn to scale,
in that, with the proportions shown, the approximations used in the calculations
would scarcely be acceptable.

time the number of vertices within the prescribed volumes are therefore
aB and aC respectively. It can be shown from the conditions postulated
above that the probability that P and Q, are mutually impingent is

( ' '') [ (B C)J~ (aBC) ip t, t ,t = exp - a + ,.,.. -'12-.
i=O t.

3. RATE OF GROWTH OF IMPINGENT GROUPS

Let us define an impingent group as consisting of such rings as are mutually
impingent. It is evident from this definition that all the rings in the system
can be classified into a set of mutually exclusive impingent groups. Every
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a' =A(I _e-a/A ) , t4b)

where A is the area of the whole field. To find T, and hence x, we have
therefore to evaluate this integral. The working of this problem will be
found in the Appendix. The result is that equation (4a) reduces approxi­
mately (near the centre of a large field, with known orders of magnitude
of the quantities involved) to
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from which we can derive the equation for T in the form

T ~ e64c' {_I +.'-(---=.t__)!-7[A--,-2a.,--2T_2-',(c,-+=--8c_2,-=) ] }

Aa 2Aa~(c+8c2) ,

where c= 1Tp2IA3a2.

This equation can be solved for T in terms of A, p and a, by successive
approximation (the incomplete factorial can be obtained from tables of
the normal probability integral). The results are shown graphically in
Fig. 2, where the values of x are plotted against the growth rate p for
different values of (a) a, and (b) the product p2a.
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point in the field will be traversed once and once only by the boundary of
every impingent group. The mean interval between one such transit and
the next may be called the generation time of the groups.

Suppose now that the effective radial width of the rings is r, and that
the generation time is T. Then, out of a period of time T each point in the
field will spend a mean time rip within the mycelial area, so that the
proportion of the ground occupied by the latter is

x = rIPT. (3)

Now the volume contained within the compound figure of intersecting
cones which represents an impingent group up to the moment of origin of
its successor must be that containing one vertex. The height of this figure
is on the average T. If then we denote the area at time t of the group by
a'(t), we have .

I =af: (a'(t) -a'(o))dt. (4a)

Since the rings will in general overlap, the sum of the areas of all the
rings a will be in general greater than a', and elementary sampling theory
shows that on the average

4. INTERSPECIFIC COMPETITION

The data exhibited in Fig. 2 can be used to assess the theoretical conditions
governing the competition between species of ring-forming fungi. Three
separate cases have to be considered, according to what happens when
rings of different species impinge. In the first case, which I shall call
indifference, both rings continue to grow and fructify after intersecting; in
the second case, of bilateral extinction, both rings are obliterated in the
intersecting region, as if they were of the same species; in the third case
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there is unilateral extinction, one ring being unaffected while the other is
eliminated.

In unilateral extinction the species eliminated can maintain no equi­
librium at all, and its occupation of the territory is dependent on the
continued arrival of propagula from elsewhere (unless the reproduction
rate is so great that even a very small population can produce sufficient
propagula to colonize the transient vacancies). In general, however, the
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Fig. 2. The curves are drawn for a field of 10 acres; for larger fields the part of the
diagram above the shaded zone is unchanged, except for the labelling of the
contours, which will be governed by Aa= const. For smaller fields the diagram
rapidly becomes inapplicable as explained in the text. The quantity r is the effective
width of the active zone of the rings, whose value will depend inter alia on the
definition of 'cover' which one works to.

conditions are so unfavourable that such species will exist only in immature
ring systems, or where their successful competitors are excluded by other
factors.

In cases of indifference, the two ring systems will simply co-exist; they
will attain a steady state in which both have a finite proportional occupa­
tion, whatever the relation between their parameters, and the only index
of relative success will be their net reproductive efficiency per unit area.

In bilateral extinction (the most interesting case, since it will cover very
closely related species), the one with the larger growth rate will eventually
eliminate the other, though the time required will be very long unless the
difference is large; we assume equal values of a. (This may be seen by
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considering the intersection of two cones with parallel axes but different
vertical angles; at a sufficient distance from the vertices the cone with the
larger angle will wholly enclose the other.) Likewise, if both have the
same growth rate p, but different reproduction rates a, the one with the
greater a will after sufficient time (again likely to be very long) eliminate
the other. Application of the method of dimensions shows that the condi­
tion that both species should have a finite occupation density at the steady
state is that their values of the product p2a should be equal. It follows that
of two bilaterally competing species, the one with higher p2a will always
tend to oust the one with the lower value. Thus the eventual survivors
of such a competing group will tend to have the same p2a, and this the
highest possible for them. Of two such, the one with higher a and lower
p will be able to achieve the higher proportional occupation of the ground,
though this is not necessarily decisive for survival.

Inspection of Fig. 2 will now show that there will be a general tendency
towards more rapid reproduction of rings and slower growth rate. Since
the ring habit is itself dependent on the exhaustion or poisoning of recently
occupied ground, there is likely to be a definite lower limit to the growth
rate, and there is also an upper limit to the rate of reproduction. Thus we
may expect a fairly definite clustering of the values of steady-state occupa­
tion about the optimum thus determined. Consideration of the order of
magnitude of the actual rates observed in nature leads us to expect this
to be of the order of 0'05, i.e. 5 % of the ground occupied, based on the
arbitrary assumption of 2 yards for the effective thickness of the rings.
Data which I have obtained on the ecology of fungi in Skokholm Island,
making this same assumption, bear out this expectation fairly well (Parker­
Rhodes, 1953). Any other figure for the r of equation (3) would be equally
consistent if applied to the same data, though the 'observed' and 'cal­
culated' percentages would both differ from the figures given here. Fig. 2

also shows that, despite the general tendency towards slow growth, species
subject to bilateral extinction may tend to a higher growth rate, owing to
the steep slope of the p2a-contours.

There is unfortunately little direct experimental evidence to test these
conclusions. There are, indeed, only a few references in the literature to
what happens when two rings of different species meet. Shantz & Piemeisel
(1917) report that Agaricus campestris is extinguished unilaterally by
Calvatia cyathiformis, but this is the only recorded case of unilateral extinc­
tion known to me, though there must be others awaiting discovery.
Indifference is no doubt much the commonest condition, but again
specific confirmation is lacking; one proven instance has been given by
myself (Parker-Rhodes, 1950, pI. 8) with Lactarius rufus and Collybia
maculata. Bilateral extinction is presumably the rule with the most closely
related species, but it may well occur in other cases also.

To some extent the long-term conclusions of this section are open to
question, since, as we shall see in §7, the time required to reach a steady
state may in some circumstances, especially before the coming of man
broke up the primeval grasslands of temperate climates, be so long that
species may become adapted specifically to existence in juvenile ring
systems. But in default of further evidence speculation is idle.
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5. NON-UNIFORM FIELDS

In the foregoing discussion it has been assumed that the field of the ring
system was large, that is to say, boundary effects were neglected. Exact
treatment of this problem is difficult, and the mathematical models
required can never be very realistic; it is sufficient therefore to consider
the matter qualitatively. Supposing the field to be bounded by ground
uninhabitable by the mycelium, the percentage occupation will be less
at the edge than near the centre, because there mycelium can only arrive
from one side instead of from all round. In the ideal case of an infinite
straight-edge boundary, the reduction will be exactly half; it will become
negligible at distances from the boundary of the order of the distance
covered by the growing mycelium in the generation time T of an impingent
system.

Similarly, any limited region of uninhabitable territory within a large
field, such as an outcrop of rock, will be surrounded by a zone of similar
width in which the mean proportional occupation will be reduced, though
by less than half. Conversely, a narrow promontory from the field,
surrounded on most sides by uninhabitable ground, will support a mean
occupation of less than half the general mean.

If the field is appreciably smaller than the 10 acres assumed in Fig. 2,

the mean occupation will be rather drastically curtailed. Other factors
being equal, the occupation density is proportional to A.exp[ -kA-6].
With the optimum plausible figures of a = o· I ring per acre per year and
p = 6 in. per year, k is approximately 100, and the exponential factor
falls from about ! to virtually zero as A falls from 2 to I acre; for less
favourable a and p the vanishing will occur for larger areas. It follows
that fairy ring systems cannot permanently exist on areas appreciably
less than 10 acres. It obviously does not imply that rings cannot occur on
such areas, as everyone who has a lawn must know, but that such rings
will be very infrequent when (if ever) a steady state is reached. These
small areas can therefore play only a negligible part in the ecology of long
lived ring-formers such as we have been considering.

6. FACTORS AFFECTING THE EFFECTIVE REPRODUCTION RATE

It is evident that one of the most important factors for ring-forming fungi
is the effective rate of reproduction of new rings. Any means, therefore,
by which this could be increased, may be ofadvantage to the species. Two
possibilities may be considered: homothallism, and spontaneous breaching.

Obviously, if the successful germination of at least two spores of appro­
priate 'sex' is necessary for the establishment of a new fruiting ring, the
rate of such new establishments will be less than if a single germination
were effective. Since there is no reason to suspect that homothallism
necessarily carries with it any important loss of growth rate, a homothallic
race will usually have a larger value of p2a than heterothallic races of the
same species which will react with it in bilateral extinction. We must
therefore expect to find few cases of both habits co-existing in obligately
ring-forming species, unless perhaps geographical or ecological isolation

5 MYC.38
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mitigates the relationship. In particular, if a homothallic strain of any
heterothallic species appears, it would be expected to eliminate, in time,
all the latter, unless some are saved by effective barriers. This would of
course be a long-term disadvantage to the species affected, by curtailing
its capacity for variation; we might therefore expect that fairy ring fungi
would be exceptionally resistant to relapsing into homothallism, except in
cases where the homothallism is facultative and rarely exercised. This
exception may apply to gasteromycetes, such as the Lycoperdacei, several
species of which are reported as homothallic, since their spores are normally
distributed in relatively dense clouds so that most rings will be in practice
the product of multiple germination whatever a single spore may be able
to accomplish in a Petri dish.

Turning now to spontaneous breaching, let us suppose that by some
means (say a lethal gene locally homozygous through caryallaxis with
a new germling) a length of the perimeter of a growing ring is abolished. The
subsequent growth of such a ring should ideally proceed with two in­
curving horns which, when they meet, will reconstitute the closed peri­
meter and at the same time abstrict a Y-shaped portion from which a new
ring could grow inside the parent. Such a secondary ring will belong to
the next impingent group after that of its primary; the points of origin of
secondaries will lie at a more or less definite distance within the effective
perimeter of the primary. The effect of such spontaneous breaches on the
growth of an impingent system requires a little consideration.

In the geometrical model (Fig. I) all secondary cones of a given im­
pingent group, having a present radius pt ', have their vertices on a circle
at a height t' and of radius p(T + t - t' - to) (where T + t is the age of the
impingent group to which the secondaries belong, and to is the delay
occupied in the process described above). Evidently the aggregate area b
contributed to the system by the secondaries will be

jT +t- t.
b= 0 27T2p3ltO' t'2( T + t - t' - to) .dt'

= 17T2p3lto{t4 + 4T"t3+ 6T"2t2+4 T"3t + T"4} , (7)

where T" = T-to::C= T

and Ito is the rate of breaching. This expression will combine additively
with the a of §3; it will be seen that the coefficient of t in this polynomial
will be of comparable order with that in a (see equation (13) in the
Appendix), and therefore negligible in comparison with that of t2, only if

Ito '" 637T!p4/Ai (Au)3, (8)

which, with A=S x 104, Au= 10-\ p= I, makes Ito'" 10-6, in which case
the effect of the breaching on the effective reproduction rate would be
small; if therefore the effect is to be appreciable, the new polynomial
outweighs the old, and its dominant term being in t, not in t2

, the equation
for T will become

={_I_ I -exp[ -27Tt ltoA t T ] } _4i\o/2p
T A I + t) At erw:«:

a 27T /\0
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From this it is apparent that except for very small values of "0 the effect
of spontaneous breaching followed by formation of secondary rings will
be to reduce the proportional occupation of the ground at the steady state,
the effect increasing rapidly with the area of the field; in fact, under these
conditions, the extra rings increase the sweeping effect more effectively
than they add to the number of fructifications. If we take the case where
"0 ~ 10-6, so that equation (6) is still approximately correct, the number of
secondaries added within a given impingent group during the period 7 will
be 3"-0 ~ (I +p2) /p; with x = 0'05 and p~ I yd. per year, this quantity is
~ 10-3 of a, whereas for p~ 10-1 yd. per year, the two quantities are
comparable. Thus spontaneous breaching could only be an appreciable
factor in raising the proportion of occupied ground if the growth rate were
very small and the field area not much in excess of 10 acres.

7. LONGEVITY OF FAIRY RINGS

It is commonly assumed that ring-forming fungi are among the most long­
lived of all organisms. Ifwe regard any secondaries which may be formed
as above as continuations of their primaries, this may well be correct, but
it is more natural to regard this as a case of vegetative reproduction, and
to define longevity in terms of the geometrically continuous perimeter.

The problem can be approached by the method of dimensions. There
are three parameters which may be considered relevant; the growth rate p,
the reproduction rate a, and the surface density of surviving rings; this
last may be replaced, if we leave out the total number of rings (which is
of course a dimensionless quantity), by the field area A, though care will
be required in its interpretation. The first of these parameters can,
paradoxically, be ruled out as a mere scale factor; for although an
increase in p will reduce the time needed for a ring to reach a given size, it
will simultaneously increase the size reached by the ring when its first
successor appears, which, as is evident from §3, is what really determines
the time scale of the system. It follows that, in general, the mean life is

i =k/Aa, (10)

where k is a numerical constant which we shall evaluate.
At first sight this equation appears paradoxical, as it implies that rings

tend to live longer in a small field than in a large one. We must remember,
however, that steady-state conditions are implied, and that the total
number of rings does not appear in the equation. If we suppose that a
given number of rings in a small field are spread out more widely, they
will obviously take longer to impinge and so live longer; but if they were
formerly in a steady state they will be so no longer, and the number of
rings will increase until a new steady state is reached, which will not occur
until equation (10) is again satisfied. Actually (though I have avoided
diachronic considerations in this paper) it will take so long to reach a
steady state in a large field of say more than 100 acres that under such
conditions the foregoing analysis is scarcely relevant. Such large areas of
uniform conditions for ring growth are rarely encountered in the presence
of intensive human settlement, and are therefore of little economic

5-2
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importance; but unfortunately the chiefquantitative work on this question
up to date, that of Shantz & Piemeisel (19 I7), was done in such conditions
in the American prairies. Their data must therefore be taken as referring
to a relatively juvenile state of the ring system. In Western Europe the
rings in such aged or undisturbed vegetation as remains and is of economic
interest (e.g. so-called permanent grass, marginal grazing lands, etc.) will
usually be in nearly steady-state conditions.

We may rewrite equation (10) less paradoxically, by taking account of
the actual number N of surviving rings in the field, and writing A = NJv
where v is the surface density of the rings. This last at the steady state can
depend only on p and a, and the method of dimensions gives the result
v =huip-i; substituting this into equation (10) then gives us

l=hkINpiu! , (r r)

which shows the virtual dependence of t on p on the rather artificial
assumption that N is fixed.

The constant k can be evaluated from the geometrical consideration
that the product Aut is the average ring's share of AaT (pT being the
mean radius of the field) and that this is 3 times the total number of rings
present; since at the steady state each ring must have on the average
exactly one successor, it follows that Aut= k = 3. The constant h in equation
(I I) can be found from the fact that, if we consider a single ring only,
itself constituting the whole of its impingent group, its lifetime must be in
general equal to the generation time of the latter. Thus, for N = I equation
(II) should reduce approximately to (6), whence h= T i = 0'48 I approx.

The equation t = 31Au shows now that the order of magnitude of the
mean lifetime of rings at a steady state should usually be from 30 to
300 years. This is broadly speaking borne out by such observations as are
available. In those cases, such as very extensive fields, where steady states
are not reached, lifetimes may be much greater than this, and under these
conditions the supposed great longevity of fairy rings may be true. But in
situations here regarded as typical they are likely to be less long lived than
many species of forest trees, for example, and so, probably, less also than
their mycorrhizal fungi.

Always up to now we have made the assumption that there is no intrinsic
cause of death other than the mutual interference of the rings. This,
obviously, is not strictly true. Though the observations of Shantz &
Piemeisel indicate that some rings can live as long as the above figures
predict, their maps also make clear that these old rings are always frag­
mentary, and the breaches which appear in them are not normally filled
in the manner envisaged above, but tend to be permanent; moreover,
many of their figures can only be explained on the assumption that half­
rings and smaller fragments may persist for a long time without reforming
themselves into complete perimeters. There are also reports in the literature
suggesting the simultaneous death of a whole ring at a relatively early age;
such an occurrence is recorded for example for Aspropaxillus giganteus by
Rosenvinge (1933)' If the average lifetime of a ring, in view of these
hazards, is nevertheless of the same order of magnitude as the i calculated
above, our conclusions will not be much affected. But if their effect is to
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reduce the average lifetime appreciably below this, the effect will not be
negligible. If the expected proportion of compound rings is small, attain­
ment of the steady state will be delayed, and the proportional occupation
achieved by the system will be reduced; but if there would be a sub­
stantial proportion of compound rings if they survived long enough,
premature decease will have the effect of a reduction of growth rate, and
so increase occupation percentages. The modification required in Fig. 2 is
unlikely to be appreciable, except for the lowest reproduction rates, whose
unfavourable effects on occupation will be less than indicated in the graphs.

One important effect of premature decease may be its effects in inter­
specific competition with unilateral extinction; for it may enable the
weaker species to survive indefinitely, if this should have the advantage in
length of life. There is, however, no evidence on this point.

8. DISCUSSION

One general conclusion which emerges from this analysis is that no species
of ring-forming fungus can attain an occupation of more than a few per
cent of the available ground (excluding ground occupied in the sense of
being made uninhabitable by the species, the extent of which is in most
cases quite unknown). This is therefore a habit of very low ecological
efficiency, and it can only exist at all, one must suppose, on account of
some biological impossibility of colonizing those habitats where it is best
exemplified in any other manner. That such low density, and consequent
open structure of the fungus communities, is a fact, is demonstrated by the
results I have obtained on Skokholm Island (Parker-Rhodes, 1953). The
work of Shantz and Piemeisel, as I have already mentioned, cannot be
cited here since it does not refer to a steady state, whereas on Skokholm
the available fields, being relatively small (up to about 25 acres), are
probably already in this condition. There are in fact rather few obvious
rings of any species there, which is what one would expect of a mature
system. I t is interesting also that the one species for which there are few
ecological barriers on the island, and therefore disposes of a field of well
over 100 acres, is Lepiota procera, which exhibits a ring system of the
'juvenile' type, similar to those described by Shantz and Piemeisel.

One must conclude, I think, that there is a fundamental property in the
physiology of fungi, at least of the larger Basidiomycetes, which makes
impossible the continued growth ofmycelium in the same body ofmedium.
If that were so, the only non-ring forming species would be those growing
in habitats where the annual access of organic matter is sufficient for the
year's needs of the fungus; here, continued growth of the fungus would be
possible by successive recolonization of the annual layers without lateral
spread of mycelium. Such conditions evidently obtain best in forest com­
munities, but are neither universal in nor limited to these; Pteridieta, for
example, provide a fairly considerable rate of access, as do Sphagneta and
many other hygrophytic associations. In these, one may suppose, the ring
habit is obligatory only on the species affecting the deepest layers of the
humus, and will be a considerable handicap to the rest. There are indeed
some species which often or usually form rings even in woodland leaf-
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humus, such as Craterellus tubaeformis, but the growth of these may well
depend merely on local variations in the rate of access of organic material,
which may be considerable.

On this hypothesis, the ring habit would only be typical in those plant
associations having a low rate of access, such as poor grassland and other
low-growing vegetation. This is, of course, borne out by general experi­
ence. There remains, however, the problem of those habitats which com­
bine a low rate of access with small areal extent, that is, with frequent
intermission of the characteristic flora; such, for example, are many
mountain and coastal habitats where the vegetation is much dissected by
rocks, clearings and small open spaces in woods on thin soils, sand dunes,
burnt ground, and most ruderal habitats. Such places are attractive to
relatively few species, but intensive study generally reveals the presence
of more fungi than they are usually credited with. We have seen that such
small areas are unlikely to be adequate for ring-formers of the character
we have been discussing, and this prompts the question of what adapta­
tions would be needed to enable a Basidiomycete successfully to compete
for them. One possibility would be to reduce the linear scale of their
operations, producing scanty and restricted mycelia, small growth rates,
and small basidiocarps; such a species could maintain a stable ring
system in a smaller area than more expansive forms. Such a one is
Crinipellis stipitarius, one of the commonest species of such habitats. Con­
versely, however, slow growth rates would be a considerable disadvantage
in open competition with typical ring-fungi.

Another adaptation serving the same end would be an increased
reproduction rate, which would make possible the rapid replacement of
rings extinguished by having reached the boundaries of the field. This
raises the question, why is the actual reproduction rate of typical ring
fungi so extremely low; that it is so seems borne out by all observers (the
data of Shantz and Piemeisel are relevant here). The reason is not far to
seek: if the normal course of events were that a single spore should germi­
nate to establish a uninucleate mycelium, the great majority of rings in
a heterothallic species would remain sterile until their first impingement.
It can, however, be shown from equation (6) that the majority of rings in
a stable system with optimal parameters will be thus virgin (the compound
rings are in a majority only in the bottom region of Fig. 2). Therefore
a species with this habit would be supporting a large haploid population,
itself a retarding factor on evolution, without the benefit of much gain in
reproductive capacity. Thus, as in the analogous case of homothallism,
there will be a contradiction between the short-term advantage of repro­
duction rate and the long-term advantage of evolutionary potential; the
latter is best served by allowing only a very brief life to the uninucleate
mycelium, so that at least two compatible spores must germinate together
in order that a new ring be initiated, and this we may take to be the
general rule among ring-fungi.

These considerations do not apply in the case of species which affect
small fields, such as we have seen to be incapable of supporting stable
ring systems; in these habitats the increased reproduction rate made
possible by the presence of monospore uninucleate rings awaiting diploidi-
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zation through a second germination may outweigh other considerations.
This is perhaps the condition of such comparatively large species charac­
teristic of ruderal habitats as Voloaria speciosa, which sometimes appears,
seemingly for the first time, in large rings. Though such species are also
found in ordinary open grassland, they may depend for ultimate survival
on their more circumscribed retreats.

The most obvious remedy for a low reproduction rate would be increased
spore production. In this the Lycoperdacei excel, and we might therefore
expect to find these fungi especially commonly in restricted habitats; but
in fact they are almost invariably typical large-field ringformers. Perhaps,
however, a high rate of reproduction may enable such a species of Calvatia
cyathiformis to survive in juvenile ring systems in the face of unilateral
extinction.

Ecologically, the main conclusion from the analysis is that the com­
munities ofBasidiomycetes in poor grassland associations will be in general
very open, whereas those in most associations with a rate of access of
organic matter sufficient to support non-ring-forming mycelia are closed,
at least when they have reached a steady state. In such open communities
direct interspecific competition, other than that arising from bilateral or
unilateral extinction, will be reduced to a minimum. Both these forms
of interaction are certainly less frequent, probably much less so, than
indifference. This opens an opportunity for the evolution of a large number
of species whose niches are differentiated from each other only by such
mutual adaptations as are necessary to avoid hostile interactions; for such
a set of species can exploit the substrate more effectively than anyone of
them, not through complementary ecological specialization but in spite
of identical requirements. It is of course almost impossible to adduce
evidence for so negative a thesis; but it is at least significant that the
number of species of Basidiomycetes in such grassland is often much
greater than that of the plants, notwithstanding the simple structure and
high uniformity of the habitat. In view of this conclusion it is perhaps
unnecessary to expend our ingenuity in trying to apply Gauss's principle
to these fungi.

APPENDIX

DERIVATION OF THE EQUATION (5)
The area of the preposite ring is Trp2t2; that of any other ring of present
radius r is Trp2['2. The number of rings having a radius within the range
p(t' ± tot') and a central distance from the preposite within the range
p(t" ± l8t") is obtained from the element of volume of the cone model in
which their vertices lie, and is 2 Trp2at" 8t'St", The chance that anyone of
these is an impingent on the preposite, and therefore the proportion of
them which belong to the impingent group, is p(t, t', t"). Therefore their
aggregate area is given by the double integral

a = 2 Tr2p4afTC+1t'2t"P(t, t', t")dt'dt"+ Trp2t2
O. 0

= 2Tr2p4aJ:t"rAUt"J~'+t['2(1+A~2(t"2_t- t'2) + .. .)dt' dt"+ Trp 2t2. (12)



72 Transactions British Mycological Society
Now, the quantity Aa is equal to the absolute rate of appearance of rings
over the whole field, which is in practice of order less (usually much less)
than one per year; we may therefore approximate (near the centre of
a large field) by ignoring further terms of the series. Moreover the limit
T in the integral over dt" is the time required by the preposite ring to grow
to the size of the whole field, which we may take as infinite. With these
approximations' the integral can be evaluated as

21T2p4 { (A3a2 ) (Aat)5}a= A5 a4 32+2I(Aat)+ 211p2+4 (Aat)2+t(Aat)3- I20 . (13)

This expression can be further simplified, when account is taken of the
orders of magnitude of the quantities involved. We know that in general
A ~ '" 104 yd.", Aa < '" 10-1 per year, and p '" I yd. per year, and it can
be shown that with these values the terms in t3 and t5 will not exceed 1/20
of that in t2, which contains 90 % of the whole quantity in all practical
cases. In that case the equation reduces to

a 641T2p4 ( 1Tp2 81T2p4) 2
::4:::= A6a4 + A3a2 + A6a4 (Aat) ,

which substituted in equation (4) gives (5) of the text.
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