New Study Suggests Aliens Don't Visit Us Because Our Sun Is Too Boring
Many thinkers and scientists have addressed the Fermi Paradox and tried to come up with a reason why we don't see any evidence of an expanding technological civilization.
Life may be extraordinarily rare, and the obstacles to interstellar travel may be too challenging. It could be that simple.
But a new paper has a new answer: Maybe our Solar System doesn't offer what long-lived, rapidly expanding civilizations desire – the correct type of star. ...
A new paper addresses the Fermi Paradox by focusing on star types. It says that not all types of stars are desirable to an expanding technological civilization. Low-mass stars, particularly K-dwarf stars, are the best migration targets for long-lived civilizations.
The paper is "Galactic settlement of low-mass stars as a resolution to the Fermi paradox," and the Astrophysical Journal has accepted it for publication. The authors are Jacob Haqq-Misra and Thomas J. Fauchez. Haqq-Misra is a Senior Research Investigator at the Blue Marble Space Institute of Science in Seattle, Washington. Fauchez is a Research Assistant Professor in Physics from the American University in Washington, DC. ...
The authors point to one of the most famous analyses of the Fermi Paradox. It came from American astrophysicist Michael Hart in 1975.
Hart's paper was "An Explanation for the Absence of Extraterrestrials on Earth," and it was published in the Quarterly Journal of the Royal Astronomical Society. It's considered to be the first rigorous analysis of the paradox. ...
Hart pointed out that a technological civilization would've had ample time to reach us unless they had started less than 2 million years ago. For Hart, the only explanation for the lack of evidence of alien civilizations is that there are none.
In his paper, Hart arrived at a couple of conclusions: SETI and similar efforts are a waste of time and money, and if anyone colonizes our Solar System, it'll probably be our descendants who do it.
The authors of this paper disagree. ...
An underlying assumption for many people who contemplate the Fermi Paradox is that stars are uniformly attractive to a spacefaring civilization, and the civilization would spread everywhere equally. But is that true?
The authors of this new paper don't think so. "We suggest, following the hypothesis of Hansen & Zuckerman (2021), that an expanding civilization will preferentially settle on low-mass K- or M-dwarf systems, avoiding higher-mass stars, in order to maximize their longevity in the galaxy," they write. ...
The authors of this new paper calculated a new estimate for the time a galactic civilization needs to colonize the galaxy if that civilization only targeted K dwarfs and M dwarfs. They say it would take two billion years for a galactic civ to reach all low-mass stars. ...
The authors say it's still worth looking for signs of another civilization expanding, if only to place more evidence-based constraints on our ponderings. And our target should be low-mass stars. ...