• We have updated the guidelines regarding posting political content: please see the stickied thread on Website Issues.

Nuclear Bomb Making Manual

A

Anonymous

Guest
Ever read about the reports on how osama's men had nuclear information? well this is what I found, I geuss its not so hard eh?

II. Nuclear Fission/Nuclear Fusion
------------------------------


There are 2 types of atomic explosions that can be facilitated by U-235;
fission and fusion. Fission, simply put, is a nuclear reaction in which an
atomic nucleus splits into fragments, usually two fragments of comparable
mass, with the evolution of approximately 100 million to several hundred
million volts of energy. This energy is expelled explosively and violently in
the atomic bomb. A fusion reaction is invariably started with a fission
reaction, but unlike the fission reaction, the fusion (Hydrogen) bomb derives
its power from the fusing of nuclei of various hydrogen isotopes in the
formation of helium nuclei. Being that the bomb in this file is strictly
atomic, the other aspects of the Hydrogen Bomb will be set aside for now.

The massive power behind the reaction in an atomic bomb arises from the
forces that hold the atom together. These forces are akin to, but not quite
the same as, magnetism.

Atoms are comprised of three sub-atomic particles. Protons and neutrons
cluster together to form the nucleus (central mass) of the atom while the
electrons orbit the nucleus much like planets around a sun. It is these
particles that determine the stability of the atom.

Most natural elements have very stable atoms which are impossible to
split except by bombardment by particle accelerators. For all practical
purposes, the one true element whose atoms can be split comparatively easily
is the metal Uranium. Uranium's atoms are unusually large, henceforth, it is
hard for them to hold together firmly. This makes Uranium-235 an exceptional
candidate for nuclear fission.

Uranium is a heavy metal, heavier than gold, and not only does it have
the largest atoms of any natural element, the atoms that comprise Uranium have
far more neutrons than protons. This does not enhance their capacity to
split, but it does have an important bearing on their capacity to facilitate
an explosion.

There are two isotopes of Uranium. Natural Uranium consists mostly of
isotope U-238, which has 92 protons and 146 neutrons (92+146=238). Mixed with
this isotope, one will find a 0.6% accumulation of U-235, which has only 143
neutrons. This isotope, unlike U-238, has atoms that can be split, thus it is
termed "fissionable" and useful in making atomic bombs. Being that U-238 is
neutron-heavy, it reflects neutrons, rather than absorbing them like its
brother isotope, U-235. (U-238 serves no function in an atomic reaction, but
its properties provide an excellent shield for the U-235 in a constructed bomb
as a neutron reflector. This helps prevent an accidental chain reaction
between the larger U-235 mass and its `bullet' counterpart within the bomb.
Also note that while U-238 cannot facilitate a chain-reaction, it can be
neutron-saturated to produce Plutonium (Pu-239). Plutonium is fissionable and
can be used in place of Uranium-235 {albeit, with a different model of
detonator} in an atomic bomb. [See Sections 3 & 4 of this file.])

Both isotopes of Uranium are naturally radioactive. Their bulky atoms
disintegrate over a period of time. Given enough time, (over 100,000 years or
more) Uranium will eventually lose so many particles that it will turn into
the metal lead. However, this process can be accelerated. This process is
known as the chain reaction. Instead of disintegrating slowly, the atoms are
forcibly split by neutrons forcing their way into the nucleus. A U-235 atom
is so unstable that a blow from a single neutron is enough to split it and
henceforth bring on a chain reaction. This can happen even when a critical
mass is present. When this chain reaction occurs, the Uranium atom splits
into two smaller atoms of different elements, such as Barium and Krypton.

When a U-235 atom splits, it gives off energy in the form of heat and
Gamma radiation, which is the most powerful form of radioactivity and the most
lethal. When this reaction occurs, the split atom will also give off two or
three of its `spare' neutrons, which are not needed to make either Barium or
Krypton. These spare neutrons fly out with sufficient force to split other
atoms they come in contact with. [See chart below] In theory, it is
necessary to split only one U-235 atom, and the neutrons from this will split
other atoms, which will split more...so on and so forth. This progression
does not take place arithmetically, but geometrically. All of this will
happen within a millionth of a second.

The minimum amount to start a chain reaction as described above is known
as SuperCritical Mass. The actual mass needed to facilitate this chain
reaction depends upon the purity of the material, but for pure U-235, it is
110 pounds (50 kilograms), but no Uranium is never quite pure, so in reality
more will be needed.

Uranium is not the only material used for making atomic bombs. Another
material is the element Plutonium, in its isotope Pu-239. Plutonium is not
found naturally (except in minute traces) and is always made from Uranium.
The only way to produce Plutonium from Uranium is to process U-238 through a
nuclear reactor. After a period of time, the intense radioactivity causes the
metal to pick up extra particles, so that more and more of its atoms turn into
Plutonium.

Plutonium will not start a fast chain reaction by itself, but this
difficulty is overcome by having a neutron source, a highly radioactive
material that gives off neutrons faster than the Plutonium itself. In certain
types of bombs, a mixture of the elements Beryllium and Polonium is used to
bring about this reaction. Only a small piece is needed. The material is not
fissionable in and of itself, but merely acts as a catalyst to the greater
reaction.



============================================================================


- Diagram of a Chain Reaction -
-------------------------------



|
|
|
|
[1]------------------------------> o

. o o .
. o_0_o . <-----------------------[2]
. o 0 o .
. o o .

|
\|/
~

. o o. .o o .
[3]-----------------------> . o_0_o"o_0_o .
. o 0 o~o 0 o .
. o o.".o o .
|
/ | \
|/_ | _\|
~~ | ~~
|
o o | o o
[4]-----------------> o_0_o | o_0_o <---------------[5]
o~0~o | o~0~o
o o ) | ( o o
/ o \
/ [1] \
/ \
/ \
/ \
o [1] [1] o
. o o . . o o . . o o .
. o_0_o . . o_0_o . . o_0_o .
. o 0 o . <-[2]-> . o 0 o . <-[2]-> . o 0 o .
. o o . . o o . . o o .

/ | \
|/_ \|/ _\|
~~ ~ ~~

. o o. .o o . . o o. .o o . . o o. .o o .
. o_0_o"o_0_o . . o_0_o"o_0_o . . o_0_o"o_0_o .
. o 0 o~o 0 o . <--[3]--> . o 0 o~o 0 o . <--[3]--> . o 0 o~o 0 o .
. o o.".o o . . o o.".o o . . o o.".o o .
. | . . | . . | .
/ | \ / | \ / | \
: | : : | : : | :
: | : : | : : | :
\:/ | \:/ \:/ | \:/ \:/ | \:/
~ | ~ ~ | ~ ~ | ~
[4] o o | o o [5] [4] o o | o o [5] [4] o o | o o [5]
o_0_o | o_0_o o_0_o | o_0_o o_0_o | o_0_o
o~0~o | o~0~o o~0~o | o~0~o o~0~o | o~0~o
o o ) | ( o o o o ) | ( o o o o ) | ( o o
/ | \ / | \ / | \
/ | \ / | \ / | \
/ | \ / | \ / | \
/ | \ / | \ / | \
/ o \ / o \ / o \
/ [1] \ / [1] \ / [1] \
o o o o o o
[1] [1] [1] [1] [1] [1]






============================================================================


- Diagram Outline -
---------------------


[1] - Incoming Neutron
[2] - Uranium-235
[3] - Uranium-236
[4] - Barium Atom
[5] - Krypton Atom


III. The Mechanism of The Bomb
-------------------------


Altimeter
---------

An ordinary aircraft altimeter uses a type of Aneroid Barometer which
measures the changes in air pressure at different heights. However, changes
in air pressure due to the weather can adversely affect the altimeter's
readings. It is far more favorable to use a radar (or radio) altimeter for
enhanced accuracy when the bomb reaches Ground Zero.

While Frequency Modulated-Continuous Wave (FM CW) is more complicated,
the accuracy of it far surpasses any other type of altimeter. Like simple
pulse systems, signals are emitted from a radar aerial (the bomb), bounced off
the ground and received back at the bomb's altimeter. This pulse system
applies to the more advanced altimeter system, only the signal is continuous
and centered around a high frequency such as 4200 MHz. This signal is
arranged to steadily increase at 200 MHz per interval before dropping back to
its original frequency.

As the descent of the bomb begins, the altimeter transmitter will send
out a pulse starting at 4200 MHz. By the time that pulse has returned, the
altimeter transmitter will be emitting a higher frequency. The difference
depends on how long the pulse has taken to do the return journey. When these
two frequencies are mixed electronically, a new frequency (the difference
between the two) emerges. The value of this new frequency is measured by the
built-in microchips. This value is directly proportional to the distance
travelled by the original pulse, so it can be used to give the actual height.

In practice, a typical FM CW radar today would sweep 120 times per
second. Its range would be up to 10,000 feet (3000 m) over land and 20,000
feet (6000 m) over sea, since sound reflections from water surfaces are
clearer.

The accuracy of these altimeters is within 5 feet (1.5 m) for the higher
ranges. Being that the ideal airburst for the atomic bomb is usually set for
1,980 feet, this error factor is not of enormous concern.

The high cost of these radar-type altimeters has prevented their use in
commercial applications, but the decreasing cost of electronic components
should make them competitive with barometric types before too long.



Air Pressure Detonator
----------------------

The air pressure detonator can be a very complex mechanism, but for all
practical purposes, a simpler model can be used. At high altitudes, the air
is of lesser pressure. As the altitude drops, the air pressure increases. A
simple piece of very thin magnetized metal can be used as an air pressure
detonator. All that is needed is for the strip of metal to have a bubble of
extremely thin metal forged in the center and have it placed directly
underneath the electrical contact which will trigger the conventional
explosive detonation. Before setting the strip in place, push the bubble in
so that it will be inverted.

Once the air pressure has achieved the desired level, the magnetic bubble
will snap back into its original position and strike the contact, thus
completing the circuit and setting off the explosive(s).



Detonating Head
---------------

The detonating head (or heads, depending on whether a Uranium or
Plutonium bomb is being used as a model) that is seated in the conventional
explosive charge(s) is similar to the standard-issue blasting cap. It merely
serves as a catalyst to bring about a greater explosion. Calibration of this
device is essential. Too small of a detonating head will only cause a
colossal dud that will be doubly dangerous since someone's got to disarm and
re-fit the bomb with another detonating head. (an added measure of discomfort
comes from the knowledge that the conventional explosive may have detonated
with insufficient force to weld the radioactive metals. This will cause a
supercritical mass that could go off at any time.) The detonating head will
receive an electric charge from the either the air pressure detonator or the
radar altimeter's coordinating detonator, depending on what type of system is
used. The Du Pont company makes rather excellent blasting caps that can be
easily modified to suit the required specifications.



Conventional Explosive Charge(s)
--------------------------------

This explosive is used to introduce (and weld) the lesser amount of
Uranium to the greater amount within the bomb's housing. [The amount of
pressure needed to bring this about is unknown and possibly classified by the
United States Government for reasons of National Security]

Plastic explosives work best in this situation since they can be
manipulated to enable both a Uranium bomb and a Plutonium bomb to detonate.
One very good explosive is Urea Nitrate. The directions on how to make Urea
Nitrate are as follows:

- Ingredients -
---------------
[1] 1 cup concentrated solution of uric acid (C5 H4 N4 O3)
[2] 1/3 cup of nitric acid
[3] 4 heat-resistant glass containers
[4] 4 filters (coffee filters will do)


Filter the concentrated solution of uric acid through a filter to remove
impurities. Slowly add 1/3 cup of nitric acid to the solution and let the
mixture stand for 1 hour. Filter again as before. This time the Urea Nitrate
crystals will collect on the filter. Wash the crystals by pouring water over
them while they are in the filter. Remove the crystals from the filter and
allow 16 hours for them to dry. This explosive will need a blasting cap to
detonate.


It may be necessary to make a quantity larger than the aforementioned
list calls for to bring about an explosion great enough to cause the Uranium
(or Plutonium) sections to weld together on impact.



Neutron Deflector
-----------------

The neutron deflector is comprised solely of Uranium-238. Not only is
U-238 non-fissionable, it also has the unique ability to reflect neutrons back
to their source.

The U-238 neutron deflector can serve 2 purposes. In a Uranium bomb, the
neutron deflector serves as a safeguard to keep an accidental supercritical
mass from occurring by bouncing the stray neutrons from the `bullet'
counterpart of the Uranium mass away from the greater mass below it (and vice-
versa). The neutron deflector in a Plutonium bomb actually helps the wedges
of Plutonium retain their neutrons by `reflecting' the stray particles back
into the center of the assembly. [See diagram in Section 4 of this file.]



Uranium & Plutonium
-------------------

Uranium-235 is very difficult to extract. In fact, for every 25,000 tons
of Uranium ore that is mined from the earth, only 50 tons of Uranium metal can
be refined from that, and 99.3% of that metal is U-238 which is too stable to
be used as an active agent in an atomic detonation. To make matters even more
complicated, no ordinary chemical extraction can separate the two isotopes
since both U-235 and U-238 possess precisely identical chemical
characteristics. The only methods that can effectively separate U-235 from
U-238 are mechanical methods.

U-235 is slightly, but only slightly, lighter than its counterpart,
U-238. A system of gaseous diffusion is used to begin the separating process
between the two isotopes. In this system, Uranium is combined with fluorine
to form Uranium Hexafluoride gas. This mixture is then propelled by low-
pressure pumps through a series of extremely fine porous barriers. Because
the U-235 atoms are lighter and thus propelled faster than the U-238 atoms,
they could penetrate the barriers more rapidly. As a result, the
U-235's concentration became successively greater as it passed through each
barrier. After passing through several thousand barriers, the Uranium
Hexafluoride contains a relatively high concentration of U-235 -- 2% pure
Uranium in the case of reactor fuel, and if pushed further could
(theoretically) yield up to 95% pure Uranium for use in an atomic bomb.

Once the process of gaseous diffusion is finished, the Uranium must be
refined once again. Magnetic separation of the extract from the previous
enriching process is then implemented to further refine the Uranium. This
involves electrically charging Uranium Tetrachloride gas and directing it past
a weak electromagnet. Since the lighter U-235 particles in the gas stream are
less affected by the magnetic pull, they can be gradually separated from the
flow.

Following the first two procedures, a third enrichment process is then
applied to the extract from the second process. In this procedure, a gas
centrifuge is brought into action to further separate the lighter U-235 from
its heavier counter-isotope. Centrifugal force separates the two isotopes of
Uranium by their mass. Once all of these procedures have been completed, all
that need be done is to place the properly molded components of Uranium-235
inside a warhead that will facilitate an atomic detonation.

Supercritical mass for Uranium-235 is defined as 110 lbs (50 kgs) of
pure Uranium.

Depending on the refining process(es) used when purifying the U-235 for
use, along with the design of the warhead mechanism and the altitude at which
it detonates, the explosive force of the A-bomb can range anywhere from 1
kiloton (which equals 1,000 tons of TNT) to 20 megatons (which equals 20
million tons of TNT -- which, by the way, is the smallest strategic nuclear
warhead we possess today. {Point in fact -- One Trident Nuclear Submarine
carries as much destructive power as 25 World War II's}).

While Uranium is an ideally fissionable material, it is not the only one.
Plutonium can be used in an atomic bomb as well. By leaving U-238 inside an
atomic reactor for an extended period of time, the U-238 picks up extra
particles (neutrons especially) and gradually is transformed into the element
Plutonium.

Plutonium is fissionable, but not as easily fissionable as Uranium.
While Uranium can be detonated by a simple 2-part gun-type device, Plutonium
must be detonated by a more complex 32-part implosion chamber along with a
stronger conventional explosive, a greater striking velocity and a
simultaneous triggering mechanism for the conventional explosive packs. Along
with all of these requirements comes the additional task of introducing a fine
mixture of Beryllium and Polonium to this metal while all of these actions are
occurring.

Supercritical mass for Plutonium is defined as 35.2 lbs (16 kgs). This
amount needed for a supercritical mass can be reduced to a smaller quantity of
22 lbs (10 kgs) by surrounding the Plutonium with a U-238 casing.


To illustrate the vast difference between a Uranium gun-type detonator
and a Plutonium implosion detonator, here is a quick rundown.

============================================================================


[1] Uranium Detonator
-----------------

Comprised of 2 parts. Larger mass is spherical and concave.
Smaller mass is precisely the size and shape of the `missing'
section of the larger mass. Upon detonation of conventional
explosive, the smaller mass is violently injected and welded
to the larger mass. Supercritical mass is reached, chain
reaction follows in one millionth of a second.


[2] Plutonium Detonator
-------------------

Comprised of 32 individual 45-degree pie-shaped sections of
Plutonium surrounding a Beryllium/Polonium mixture. These 32
sections together form a sphere. All of these sections must
have the precisely equal mass (and shape) of the others. The
shape of the detonator resembles a soccerball. Upon detonation
of conventional explosives, all 32 sections must merge with the
B/P mixture within 1 ten-millionths of a second.



____________________________________________________________________________

- Diagram -
-------------
____________________________________________________________________________
|
[Uranium Detonator] | [Plutonium Detonator]
______________________________________|_____________________________________
_____ |
| :| | . [2] .
| :| | . ~ \_/ ~ .
| [2]:| | .. . ..
| :| | [2]| . |[2]
| .:| | . ~~~ . . . ~~~ .
`...::' | . . . . .
_ ~~~ _ | . . ~ . .
. `| |':.. | [2]\. . . . [1] . . . ./[2]
. | | `:::. | ./ . ~~~ . \.
| | `::: | . . : . .
. | | :::: | . . . . .
| [1] | ::|:: | . ___ . ___ .
. `. .' ,::||: | [2]| . |[2]
~~~ ::|||: | .' _ `.
.. [2] .::|||:' | . / \ .
::... ..::||||:' | ~ -[2]- ~
:::::::::::::||||::' |
``::::||||||||:'' |
``:::::'' |
|
|
|
|
[1] = Collision Point | [1] = Collision Point
[2] - Uranium Section(s) | [2] = Plutonium Section(s)
|
|
______________________________________|_____________________________________
============================================================================



Lead Shield
-----------

The lead shield's only purpose is to prevent the inherent radioactivity
of the bomb's payload from interfering with the other mechanisms of the bomb.
The neutron flux of the bomb's payload is strong enough to short circuit the
internal circuitry and cause an accidental or premature detonation.



Fuses
-----

The fuses are implemented as another safeguard to prevent an accidental
detonation of both the conventional explosives and the nuclear payload. These
fuses are set near the surface of the `nose' of the bomb so that they can be
installed easily when the bomb is ready to be launched. The fuses should be
installed only shortly before the bomb is launched. To affix them before it
is time could result in an accident of catastrophic proportions.

IV. The Diagram of the Atomic Bomb
------------------------------

[Gravity Bomb Model]
----------------------------
-> Cutaway Sections Visible <-


============================================================================




/\
/ \ <---------------------------[1]
/ \
_________________/______\_________________
| : ||: ~ ~ : |
[2]-------> | : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| :______||:_____________________________: |
|/_______||/______________________________\|
\ ~\ | | /
\ |\ | | /
\ | \ | | /
\ | \ | | /
\ |___\ |______________| /
\ | \ |~ \ /
\|_______\|_________________\_/
|_____________________________|
/ \
/ _________________ \
/ _/ \_ \
/ __/ \__ \
/ / \ \
/__ _/ \_ __\
[3]_______________________________ \ _|
/ / \ \ \
/ / \/ \ \
/ / ___________ \ \
| / __/___________\__ \ |
| |_ ___ /=================\ ___ _| |
[4]---------> _||___|====|[[[[[[[|||]]]]]]]|====|___||_ <--------[4]
| | |-----------------| | |
| | |o=o=o=o=o=o=o=o=o| <-------------------[5]
| | \_______________/ | |
| |__ |: :| __| |
| | \______________ |: :| ______________/ | |
| | ________________\|: :|/________________ | |
| |/ |::::|: :|::::| \| |
[6]----------------------> |::::|: :|::::| <---------------------[6]
| | |::::|: :|::::| | |
| | |::==|: :|== <------------------------[9]
| | |::__\: :/__::| | |
| | |:: ~: :~ ::| | |
[7]----------------------------> \_/ ::| | |
| |~\________/~\|:: ~ ::|/~\________/~| |
| | ||:: <-------------------------[8]
| |_/~~~~~~~~\_/|::_ _ _ _ _::|\_/~~~~~~~~\_| |
[9]-------------------------->_=_=_=_=_::| | |
| | :::._______.::: | |
| | .:::| |:::.. | |
| | ..:::::'| |`:::::.. | |
[6]---------------->.::::::' || || `::::::.<---------------[6]
| | .::::::' | || || | `::::::. | |
/| | .::::::' | || || | `::::::. | |
| | | .:::::' | || <-----------------------------[10]
| | |.:::::' | || || | `:::::.| |
| | ||::::' | |`. .'| | `::::|| |
[11]___________________________ ``~'' __________________________[11]
: | | \:: \ / ::/ | |
| | | \:_________|_|\/__ __\/|_|_________:/ | |
/ | | | __________~___:___~__________ | | |
|| | | | | |:::::::| | | | |
[12] /|: | | | | |:::::::| | | | |
|~~~~~ / |: | | | | |:::::::| | | | |
|----> / /|: | | | | |:::::::| <-----------------[10]
| / / |: | | | | |:::::::| | | | |
| / |: | | | | |::::<-----------------------------[13]
| / /|: | | | | |:::::::| | | | |
| / / |: | | | | `:::::::' | | | |
| _/ / /:~: | | | `: ``~'' :' | | |
| | / / ~.. | | |: `: :' :| | |
|->| / / : | | ::: `. .' <----------------[11]
| |/ / ^ ~\| \ ::::. `. .' .:::: / |
| ~ /|\ | \_::::::. `. .' .::::::_/ |
|_______| | \::::::. `. .' .:::<-----------------[6]
|_________\:::::.. `~.....~' ..:::::/_________|
| \::::::::.......::::::::/ |
| ~~~~~~~~~~~~~~~~~~~~~~~ |
`. .'
`. .'
`. .'
`:. .:'
`::. .::'
`::.. ..::'
`:::.. ..:::'
`::::::... ..::::::'
[14]------------------> `:____:::::::::::____:' <-----------------[14]
```::::_____::::'''
~~~~~






============================================================================


- Diagram Outline -
---------------------

[1] - Tail Cone
[2] - Stabilizing Tail Fins
[3] - Air Pressure Detonator
[4] - Air Inlet Tube(s)
[5] - Altimeter/Pressure Sensors
[6] - Lead Shield Container
[7] - Detonating Head
[8] - Conventional Explosive Charge
[9] - Packing
[10] - Uranium (U-235) [Plutonium (See other diagram)]
[11] - Neutron Deflector (U-238)
[12] - Telemetry Monitoring Probes
[13] - Receptacle for U-235 upon detonation
to facilitate supercritical mass.
[14] - Fuses (inserted to arm bomb)




============================================================================


- Diagram for Plutonium Bomb -
--------------------------------
[Gravity Bomb - Implosion Model]
--------------------------------
-> Cutaway Sections Visible <-



============================================================================



/\
/ \ <---------------------------[1]
/ \
_________________/______\_________________
| : ||: ~ ~ : |
[2]-------> | : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| : ||: : |
| :______||:_____________________________: |
|/_______||/______________________________\|
\ ~\ | : |:| /
\ |\ | : |:| /
\ | \ | :__________|:| /
\ |:_\ | :__________\:| /
\ |___\ |______________| /
\ | \ |~ \ /
\|_______\|_________________\_/
|_____________________________|
/ \
/ \
/ \
/ _______________ \
/ ___/ \___ \
/____ __/ \__ ____\
[3]_______________________________ \ ___|
/ __/ \ \__ \
/ / \/ \ \
/ / ___________ \ \
/ / __/___________\__ \ \
./ /__ ___ /=================\ ___ __\ \.
[4]-------> ___||___|====|[[[[[|||||||]]]]]|====|___||___ <------[4]
/ / |=o=o=o=o=o=o=o=o=| <-------------------[5]
.' / \_______ _______/ \ `.
: |___ |*| ___| :
.' | \_________________ |*| _________________/ | `.
: | ___________ ___ \ |*| / ___ ___________ | :
: |__/ \ / \_\\*//_/ \ / \__| :
: |______________:|:____:: **::****:|:********\ <---------[6]
.' /:|||||||||||||'`|;..:::::::::::..;|'`|||||||*|||||:\ `.
[7]----------> ||||||' .:::;~|~~~___~~~|~;:::. `|||||*|| <-------[7]
: |:|||||||||' .::'\ ..:::::::::::.. /`::. `|||*|||||:| :
: |:|||||||' .::' .:::''~~ ~~``:::. `::. `|\***\|:| :
: |:|||||' .::\ .::''\ | [9] | /``::: /::. `|||*|:| :
[8]------------>::' .::' \|_________|/ `::: `::. `|* <-----[6]
`. \:||' .::' ::'\ [9] . . . [9] /::: `::. *|:/ .'
: \:' :::'.::' \ . . / `::.`::: *:/ :
: | .::'.::'____\ [10] . [10] /____`::.`::.*| :
: | :::~::: | . . . | :::~:::*| :
: | ::: :: [9] | . . ..:.. . . | [9] :: :::*| :
: \ ::: :: | . :\_____________________________[11]
`. \`:: ::: ____| . . . |____ ::: ::'/ .'
: \:;~`::. / . [10] [10] . \ .::'~::/ :
`. \:. `::. / . . . \ .::' .:/ .'
: \:. `:::/ [9] _________ [9] \:::' .:/ :
`. \::. `:::. /| |\ .:::' .::/ .'
: ~~\:/ `:::./ | [9] | \.:::' \:/~~ :
`:=========\::. `::::... ...::::' .::/=========:'
`: ~\::./ ```:::::::::''' \.::/~ :'
`. ~~~~~~\| ~~~ |/~~~~~~ .'
`. \:::...:::/ .'
`. ~~~~~~~~~ .'
`. .'
`:. .:'
`::. .::'
`::.. ..::'
`:::.. ..:::'
`::::::... ..::::::'
[12]------------------> `:____:::::::::::____:' <-----------------[12]
```::::_____::::'''
~~~~~






============================================================================


- Diagram Outline -
---------------------

[1] - Tail Cone
[2] - Stabilizing Tail Fins
[3] - Air Pressure Detonator
[4] - Air Inlet Tube(s)
[5] - Altimeter/Pressure Sensors
[6] - Electronic Conduits & Fusing Circuits
[7] - Lead Shield Container
[8] - Neutron Deflector (U-238)
[9] - Conventional Explosive Charge(s)
[10] - Plutonium (Pu-239)
[11] - Receptacle for Beryllium/Polonium mixture
to facilitate atomic detonation reaction.
[12] - Fuses (inserted to arm bomb)
 
Cheers for the info.
I'm off to nuke Swindon.
No jury in the land would convict me.
 
Just nipping off to the shops, anyone want me to pick up some Telemetry Monitoring Probes for them? ;)

As for Osmosis Bin Liner being Nuclear capable, the plans were probably left to scare us infidels, and is all bluff IMO.
 
I read a couple of days ago that this"A-Bomb Manual"was from an old back issue of"The Journal of Irreproducible Results"which is a sort of satirical magazine for physicists.It's supposedly a joke that's been circulating around the web since '89.
 
Yep....it's a joke.....or is it ??

The Americans have confirmed that the papers found in the house supposedly belonging to OBL are in fact a hoax from the internet.......

.....or is that what they now want us to believe, in the vain hope that we won't all go out and build our own bombs....

Moggadon
 
Major Kraut said:
I read a couple of days ago that this"A-Bomb Manual"was from an old back issue of"The Journal of Irreproducible Results"which is a sort of satirical magazine for physicists.It's supposedly a joke that's been circulating around the web since '89.


Hehe...I'm glad you said it.......I was wondering if everybody here thought that was real or something............
 
it all looks a load of old bunkham to me but what do i know !:D
 
That can't be true. Aren't there serious laws against disseminating such information?
 
I wasn't fooled, you can tell the plans are wrong. In Diagram 4, section 6 is in completely the wrong place.

Surely somebody alse here noticed?

:blah:
 
Also, the bolts on the upper casing should be LEFT-hand thread. This is what makes it so hard to build these at home. If you go to the iron-mongers and ask him for LH thread bolts, he goes into the back room and phones Special Branch...
 
Its probably a fake, nicked from some of the A-bomb manuals reportedly on the early net.. Anyway there was a much simpler design described by a science mag back in the last century.
 
Major Kraut said:
What kind of security clearance do you guys have?

I only have 'Secret' clearance, I used to be stationed at a Strategic Air Command base that had nukes and I was an airframe tech that worked on the B-52H bombers and KC-135R refuelers.....anytime I was around the nukes I had to be escorted by military police.........
 
Art_Vandelay said:
I only have 'Secret' clearance, I used to be stationed at a Strategic Air Command base that had nukes and I was an airframe tech that worked on the B-52H bombers and KC-135R refuelers.....anytime I was around the nukes I had to be escorted by military police.........


did u ever steal anything from work? id be interested in buy a hydrogen bomb if youve got any handy.. i think it would look great as a centre piece in my dinning room
 
RichardSimmons said:
did u ever steal anything from work? id be interested in buy a hydrogen bomb if youve got any handy.. i think it would look great as a centre piece in my dinning room


Well it's your lucky day, during this holiday weekend I have a special that when you buy one Nuke the second one is half price :D ...........but really, I never even paused to look at them since I was under such scrutiny, I would go in, fix the plane, get out...
 
Yeah,I know what you mean.When I was in the Navy all I had was a Secret clearance and they'd get pissed if I happened to glance in the door to the Radio Room while walking through the passageway.
 
Major I suspect you may have been in the Navy after John Walker and Family, so they'd have been a tad wary of people near Radio rooms
 
So what was the freakiest thing you ex-military types have seen? Ever been ushered away from secret labs or hangars containing secret equipment? There's an entire thread right there....

I just read the "manual" for the first time, and firstly it's far too general to be of practical use, though the basic principles seem realistic. However it mentions that it releases a certain amount of energy in 'volts' which is not a unit of energy. It also mentions some pretty nasty stuff about flourine which I certainly wouldn't be too keen to handle in a shed in Kabul. I think if any of us here hadn't seen a car before and was given a manual that said stuff like "in order to propel the car forward you will need to inject a fine particulate spray of fuel into a combustion chamber which upon combusting will cause an increase in pressure which will force the cylinder to move....etc.etc." I think we'd have problems in making something effective.
 
...All of which radioactive fun reminds me of the kid who built a breeder reactor in the garden shed. Anyone heard this? I'll expand on the story if you're interested.
 
Dark Detective said:
Ever been ushered away from secret labs or hangars containing secret equipment? There's an entire thread right there....


Yes I have.
 
I sure as hell never saw anything very exotic.I was stuck on a WW2 vintage destroyer used to train reservists.I think they finally decommissioned the old girl back in 1980.
 
. Being that U-238 is
neutron-heavy, it reflects neutrons, rather than absorbing them like its
brother isotope, U-235. (U-238 serves no function in an atomic reaction, but
its properties provide an excellent shield for the U-235 in a constructed bomb
as a neutron reflector.

Bloody hell. I thought GCSE physics was hard.

Anyway, thanks for this, I'll think I'll print it off and leave it around my bedroom for my mum to find. :D My dad actually claimed he sat on one when he was in the navy.
 
Last edited by a moderator:
Just a word on the whole Uranium thing.... Uranium exists naturally as U232 through U241, and in accelerators as U229 through U252, although most of the isotopes are incredibly unstable. However, although I know this is a conspiracy forum, lets look at the facts.... The two most common isotopes of Uranium are U238 (about 90%) and U235 (about 9%). To make a fission bomb requires a great deal of U235 (about 20kg). For bin Laden to obtain this much material, he has either a) Bought it from the Russians, which is not going to happen despite the documentaries - would anyone sell material to people who'd use it to destabilise the Motherland (and remember that Sakharov went into exile rather than betry his government)? Or b) Has a facility to produce that much U235 covertly - the countries that we know have the Bomb developed it with the tacit cooperation of the UK or the USA - Israel, Pakistan, India, Brazil, Argentina, et al. To claim you have nukes is a big difference from using them. No-one in the world will use nukes, because the pay off (5m dead Americans) pales against the destruction of Islam (which I'm sure the Americans would follow)..... However, Anthrax in the mail? Thats another story :)
 
OBL doesn't need to have a full blow nuke. A couple of kilos of Mixed Oxide (MOX) or uranium or even waste would make a pretty good area of Bos/Wash uninhabitable if pulverised in a conventional bomb.

Very, very nasty :(
 
Back
Top